How to Design an Interactive Dash and Plotly Dashboard with Callback Mechanisms for Local and Online Deployment?

fiverr
How to Design an Interactive Dash and Plotly Dashboard with Callback Mechanisms for Local and Online Deployment?
Bybit


app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1(“📊 Advanced Financial Dashboard”, className=”text-center mb-4″),
html.P(f”Interactive dashboard with {len(df)} data points across {len(stock_names)} stocks”,
className=”text-center text-muted”),
html.Hr()
])
]),

dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H5(“🎛️ Dashboard Controls”, className=”card-title”),

html.Label(“Select Stocks:”, className=”fw-bold mt-3″),
dcc.Dropdown(
id=’stock-dropdown’,
options=[{‘label’: f'{stock} ({base_prices[stock]})’, ‘value’: stock}
for stock in stock_names],
value=[‘AAPL’, ‘GOOGL’],
multi=True,
placeholder=”Choose stocks to analyze…”
),

Binance

html.Label(“Date Range:”, className=”fw-bold mt-3″),
dcc.DatePickerRange(
id=’date-picker-range’,
start_date=”2023-06-01″,
end_date=”2024-06-01″,
display_format=”YYYY-MM-DD”,
style={‘width’: ‘100%’}
),

html.Label(“Chart Style:”, className=”fw-bold mt-3″),
dcc.RadioItems(
id=’chart-type’,
options=[
{‘label’: ‘ Line Chart’, ‘value’: ‘line’},
{‘label’: ‘ Area Chart’, ‘value’: ‘area’},
{‘label’: ‘ Scatter Plot’, ‘value’: ‘scatter’}
],
value=”line”,
labelStyle={‘display’: ‘block’, ‘margin’: ‘5px’}
),

dbc.Checklist(
id=’show-ma’,
options=[{‘label’: ‘ Show Moving Average’, ‘value’: ‘show’}],
value=[],
style={‘margin’: ’10px 0′}
),
])
], className=”h-100″)
], width=3),

dbc.Col([
dbc.Card([
dbc.CardHeader(“📈 Stock Price Analysis”),
dbc.CardBody([
dcc.Graph(id=’main-chart’, style={‘height’: ‘450px’})
])
])
], width=9)
], className=”mb-4″),

dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4(id=”avg-price”, className=”text-primary mb-0″),
html.Small(“Average Price”, className=”text-muted”)
])
])
], width=3),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4(id=”total-volume”, className=”text-success mb-0″),
html.Small(“Total Volume”, className=”text-muted”)
])
])
], width=3),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4(id=”price-range”, className=”text-info mb-0″),
html.Small(“Price Range”, className=”text-muted”)
])
])
], width=3),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4(id=”data-points”, className=”text-warning mb-0″),
html.Small(“Data Points”, className=”text-muted”)
])
])
], width=3)
], className=”mb-4″),

dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardHeader(“📊 Trading Volume”),
dbc.CardBody([
dcc.Graph(id=’volume-chart’, style={‘height’: ‘300px’})
])
])
], width=6),
dbc.Col([
dbc.Card([
dbc.CardHeader(“📉 Returns Distribution”),
dbc.CardBody([
dcc.Graph(id=’returns-chart’, style={‘height’: ‘300px’})
])
])
], width=6)
], className=”mb-4″),

dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardHeader(“📋 Latest Stock Data”),
dbc.CardBody([
dash_table.DataTable(
id=’data-table’,
columns=[
{‘name’: ‘Stock’, ‘id’: ‘Stock’},
{‘name’: ‘Date’, ‘id’: ‘Date’},
{‘name’: ‘Price ($)’, ‘id’: ‘Price’, ‘type’: ‘numeric’,
‘format’: {‘specifier’: ‘.2f’}},
{‘name’: ‘Volume’, ‘id’: ‘Volume’, ‘type’: ‘numeric’,
‘format’: {‘specifier’: ‘,.0f’}},
{‘name’: ‘Daily Return (%)’, ‘id’: ‘Returns’, ‘type’: ‘numeric’,
‘format’: {‘specifier’: ‘.2%’}}
],
style_cell={‘textAlign’: ‘center’, ‘fontSize’: ’14px’, ‘padding’: ’10px’},
style_header={‘backgroundColor’: ‘rgb(230, 230, 230)’, ‘fontWeight’: ‘bold’},
style_data_conditional=[
{
‘if’: {‘filter_query’: ‘{Returns} > 0’},
‘backgroundColor’: ‘#d4edda’
},
{
‘if’: {‘filter_query’: ‘{Returns} < 0’},
‘backgroundColor’: ‘#f8d7da’
}
],
page_size=15,
sort_action=”native”,
filter_action=”native”
)
])
])
])
])
], fluid=True)



Source link

Ledger

Be the first to comment

Leave a Reply

Your email address will not be published.


*